Федеральное государственное бюджетное учреждение науки
ИНСТИТУТ ФИЗИКИ ПОЛУПРОВОДНИКОВ ИМ. А.В. РЖАНОВА
Сибирского отделения Российской академии наук
НОВОСТИ
04.10.13
Теплее, еще теплее…

Если смотреть на мир через экран тепловизора, можно стать почти экстрасенсом: сразу становится заметно, у кого что болит, какая деталь сломана, где скрывается террорист. На лекции в рамках первого Конгресса выпускников НГУ ведущий научный сотрудник Института физики полупроводников имени А. В. Ржанова СО РАН, профессор НГУ, доктор физико-математических наук Борис Григорьевич Вайнер рассказал, какие перспективы имеет этот прибор в промышленности, медицине, науке и многих других областях.

Борис Вайнер

Как человеческое тело может быть «горячее» раскаленной кухонной плиты

Возьмем классический пример: рука прикладывается к пиджаку, затем убирается, и тепловизор показывает нам постепенно остывающий след от нее на поверхности ткани. Это  – тепловое излучение. Оно сосредоточено в инфракрасной области, поэтому человеческий глаз его не различает. Открыл это излучение в 1800 году английский астроном Вильям Гершель. Решив измерить температуру солнечных лучей, он оптической призмой разложил солнечный свет в спектр и поместил на каждый из цветов отдельный термометр. И вдруг ученый неожиданно обнаружил, что чуть ли ни сильнее всех нагревается тот измеритель температуры, который находится в темном углу с красной стороны полученной "радуги". Так выяснилось, что, солнце генерирует целый диапазон лучей, невидимый человеческому глазу, который впоследствии и назвали инфракрасным излучением.

«Производить» тепловое излучение могут не только небесные светила, но и все другие объекты, обладающие ненулевой температурой. Например, если проинтегрировать мощность излучения человеческого тела, то в сумме получится около 600 — 800 Ватт — точно такую же имеет раскаленная кухонная плита. Почему же мы не остываем, ведь окружающее нас пространство гораздо холоднее? Оказывается, что другие предметы — электронные приборы, мебель и даже стены — тоже генерируют инфракрасное излучение, и от них наше тело поглощает почти те же самые 600 Ватт. В результате мы являемся примерно 80-ваттными лампочками, и для того, чтобы тепло продолжало вырабатываться, свой запас энергии нам необходимо регулярно пополнять.

Зная, как происходит «круговорот» инфракрасного излучения, можно использовать его в своих целях. Например, в метро нет отопления, потому что оно спроектировано специальным способом, помогающим нагревать помещения от человеческого тепла.

В физике существует такое чисто теоретическое понятие, как абсолютно черное тело — объект, наделенный способностью поглощать все падающее на него электромагнитное излучение во всех диапазонах. Это некоторая идеализация, ведь таких предметов или организмов в природе не существует. Однако она необходима для вычисления коэффициента черноты реальных объектов, который показывает, во сколько раз меньше тепла они изучают по сравнению с ней.

Изображение с тепловизора СВИТ

Изучать, не прикасаясь

Посмотреть, как генерирует и поглощает тепло тот или иной предмет, можно с помощью тепловизора. Этот прибор преобразует инфракрасное излучение в электрические сигналы, которые затем «переводятся» в цвета (для каждой температуры — свой оттенок) и воспроизводятся на дисплее устройства или экране компьютера.

Самые современные тепловизоры действуют по принципу цифровой видеокамеры — у них есть матрица, которая позволяет получать цветные «картинки» и с достаточно хорошей точностью измерять температуру в каждой точке на созданном изображении.  Стоимость этих камер немаленькая, в зависимости от особенностей прибора она может варьироваться от нескольких сотен тысяч до десятков миллионов рублей. Тем не менее, научные организации покупают необходимые для исследования тепловизоры, а некоторые (например, Институт физики полупроводников им. А.В. Ржанова СО РАН) конструируют свои.

Большое преимущество тепловидения как метода научных исследований в том, что оно не требует контакта с изучаемым объектом. Это позволяет проводить измерения с расстояния, без какого-либо механического воздействия, исследовать все нюансы распределения температуры на поверхности. Объект может быть слишком подвижным, опасным (высоковольтный источник), хрупким, маленьким или горячим для контактного метода, иметь быстро изменяющуюся температуру — для тепловидения все это не является препятствием.

Тепловизор — «хитрый» глаз

Несмотря на свою дороговизну, этот метод имеет большие перспективы во многих областях человеческой деятельности. С его помощью можно тестировать электрические приборы, определять место нарушения контактов в системах электропроводки, выявлять скрытые дефекты различных непрозрачных объектов и т.д. В авиационной промышленности на Западе его применяют для диагностики состояния обшивки, воздухозаборников и других частей самолетов — он обнаруживает щели, через которые в механизм проникает влага.

Тепловизоры очень популярны у пожарных, спасателей и военных, так как они находят людей в любое время суток в условиях, в которых обычные оптические приборы решить задачу неспособны.

А в медицине у этих приборов — вообще непаханое поле возможностей. Еще в четвертом веке до нашей эры знаменитый древнегреческий врач Гиппократ сказал: «Если на теле ты нашел где-то холод или тепло, ищи в этом месте и болезнь». Сейчас с помощью тепловидения исследуются молочные железы, нервная система, состояние конечностей, кровоснабжение тканей и др. Например, заболевания позвоночника приводят к тому, что на теле возникает термоассиметрия  — правая часть спины может быть теплее левой или наоборот, и, что самое интересное, подобное явление в некоторых случаях наблюдается и в области ног. Тепловизор позволяет все это увидеть и помочь диагностировать заболевание.


У разных людей далеко не одинаковую  степень нагрева имеют разные части тела. Существуют и такие области (например, кончик носа), где температура при определенном воздействии на организм может за короткое время измениться почти на целых 10 градусов.


По тепловому излучению хорошо виден механизм охлаждения, превалирующий у того или иного человека — кто-то «остывает» с помощью потоотделения, кто-то — через расширение поверхностных сосудов. Есть люди, у которых температура во всех конечностях изменяется синхронно, а у других она вообще практически всегда стабильна. В поиске доминирующих механизмов распределения тепла в человеческом теле до сих пор остается очень много неясного, и ученым еще предстоит помучиться над их расшифровкой.  

В 2002 году было предложено включить тепловидение в систему телемедицины. Это современное научно-техническое направление, благодаря которому в перспективе станет возможным, например, проведение хирургических операций на расстоянии  — с помощью дистанционно управляемых манипуляторов.

Все вышеперечисленное — только малая часть из возможных сфер использования тепловизоров. На самом деле, их гораздо больше, и постоянно открываются новые, нередко довольно неожиданные. Например, если посмотреть с помощью этого прибора на заполненные металлические цистерны, сразу видно, сколько в них находится жидкости (даже если во время проверки они стоят на движущемся составе поезда). Таким образом, предприниматель  может дистанционно контролировать сохранность своего товара. А если ночью с вертолета «сфотографировать» завод, который подозревается в незаконном сбрасывании отходов в реку, то тоже сразу же все становится ясно — переработанное сырье, как правило, имеет более высокую температуру, чем речная вода. В сельском хозяйстве тепловизоры используют для разбраковки яблок на конвейере, для проверки  качества продуктов питания и посевов. А те, кто занимаются скачками, с помощью этого метода выбирают способных на победу лошадей.

На данный момент широкому распространению тепловизоров мешает их слишком высокая цена – даже самый маленький «ручной» приборчик для частных нужд обойдется не менее чем в 100 тысяч рублей. Но сейчас ученые во всем мире ищут способы, как удешевить производство этих устройств. «Вероятно, когда-нибудь в каждом доме будет по тепловизору. С его помощью будут выявлять болезни, контролировать работу коммунальных сетей. Он станет просто незаменимым предметом в быту», — говорит Борис Григорьевич Вайнер.  

Диана Хомякова

http://www.copah.info/articles/simply/teplee-eshche-teplee

Фото: 1, 3 - Ю. Позднякова, 2 - термограмма с выставки ИФП СО РАН (из личного архива Ю. Поздняковой)