Шрифт
Интервал
Цветовая схема
Изображения
На главную
Федеральное государственное бюджетное учреждение науки
ИНСТИТУТ ФИЗИКИ ПОЛУПРОВОДНИКОВ ИМ. А.В. РЖАНОВА
Сибирского отделения Российской академии наук
НОВОСТИ
15.10.13
Семинар 16 октября

Уважаемые коллеги!

16 октября 2013 г. в 10:00 в конференцзале АК состоится Институтский семинар.

Prof. Maki Suemitsu
Heteroepitaxy of 3C-SiC on Si Substrate and
Formation of Epitaxial Graphene


Head of the solid state electronics group at the Research Institute of Electrical Communication,
Tohoku University, Sendai, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

Приглашаются все.
Краткая аннотация доклада:

ABSTRACT

By forming a SiC thin film on Si substrates and by thermally converting the film’s top surface into graphene, an epitaxial graphene (EG) layer can be formed on Si substrates [1-7]. In this graphene-on-silicon (GOS) technology, heteroepitaxy of 3C-SiC thin films are firstly conducted on silicon substrates by using gas-source molecular beam epitaxy using monomethylsilane (MMS-GSMBE). With this growth method, high-quality 3C-SiC films can be grown at practical temperatures around 1000°C. The challenge from the low growth rate by GSMBE can be overcome by use of a two-step growth method [8]. While on-axis 3C-SiC films normally grow on Si substrates like 3C-SiC(111)/Si(111), (110)/(110) and (100)/(100), tuning of the growth conditions provides crystallographic rotation, i.e. 3C-SiC(111)/ Si(110) [9]. EG films are then formed by annealing the 3C-SiC films at ~1250°C in UHV, in which Si atoms sublimate from the surface. One of our surprises, and the benefits as well, is the fact that EG grows not only on the crystallographically coherent 3C-SiC(111) surface but also on the incoherent 3C-SiC(100) and (110) surfaces [4,6]. As for the EG/3C-SiC(111)/Si(111), it is shown that the growth proceeds in a quite similar manner as on the Si-terminated 6H-SiC(0001) surface. The inerfacial structure, the stacking, and the electronic structure of EG are shared by these to surfaces. This observation is consistent with the fact that the MMS-GSMBE-grown 3C-SiC(111)/Si(111) thin film is Si-terminated [5]. In sharp contrast, MMS-GSMBE- grown 3C-SiC(111)/Si(110) thin film is C-terminated. The EG on this surface shows essentially the same structural properties as on the C-terminated 6H-SiC(000-1) surface [7]. Similar behavior is observed on EG/3C-SiC(100)/Si(100) and EG/3C-SiC(110)/Si(110) as well, where no buffer layers form at the interface and the electronic structures are metallic [4,6]. Despite a lot of room for betterment, GOS technology has a high potential to introduce graphene into Si technology.

References

[1] Suemitsu et al., e.-J. Surf. Sci. Nanotech. 7 (2009) 311.
[2] Miyamoto et al. , e.-J. Surf. Sci. Nanotech. 7 (2009) 107.
[3] Fukidome et al., Jpn. J. Appl. Phys. 49 (2010) 01AH03.
[4] M. Suemitsu and H. Fukidome, J. Phys. D: Appl. Phys. 43 (2010) 374012
[5] R. Takahashi et al., Jpn. J. Appl. Phys. 50 (2011) 070103
[6] H. Fukidome,et al., J. Mater. Chem. 21, 17242 (2011).
[7] H. Fukidome, et al., Appl. Phys. Exp. 4, 115104 (2011).
[8] E. Saito, S. N. Filimonov and M. Suemitsu: Jpn. J. Appl. Phys. 50 010203(2011)
[9] A. Konno et al.,ECS Transactions 3, 449 (2006).