Федеральное государственное бюджетное учреждение науки
ИНСТИТУТ ФИЗИКИ ПОЛУПРОВОДНИКОВ ИМ. А.В. РЖАНОВА
Сибирского отделения Российской академии наук
НОВОСТИ
11.03.14
Институтский семинар

В среду, 12 марта, в 10-00 в конференц-зале административного корпуса ИФП СО РАН состоится институтский семинар, на котором с докладом выступит профессор Стефан Сангинетти (Институт материаловедения, Миланский университет, Италия).

Название доклада и аннотация:

Semiconductor nanostructures by Droplet Epitaxy: from growth fundamentals to devices S. Sanguinetti Dipartimento di Scienza dei Materiali, Universita di Milano Bicocca, Italy

The Dropled Epitaxy (DE) is an Molecular Beam Epitaxy (MBE) growth method which allows for the fabrication of III-V quantum nanostructures with highly designable densities, sizes, shapes and topologies. In addition, with DE it is possible to combine nansotructures with different topologies into a single nanostructure, thus allowing an unprecedented control over its electronic properties.
Unlike standard self-assembly techniques like Stranski-Krastanov) DE does not rely on strain for the formation of three-dimensional nanostructures. DE is based on the fine control of the crystallization kinetics of pulsed deposition of group III and group V column elements at controlled temperatures and fluxes.
Recent achievement in DE nanostructure size dispersion reduction and shape manipulation and modeling will be presented. Each single nanostructure can be expressly designed with large degrees of freedom (e.g. quantum dot aspect ratio, the ratio between height and base, can be tuned between 0.6 and 0.1 continously, thus allowing for the independent control of ground state emission energy and electron-phonon interaction) just controlling group III and group V deposition parameters.
Such a high level of design of the electronic properties permits the fabrication of devices based on quantum nanostructures with improved performances respect to standard self-assembly techniques. In particular:
1) Single Photon Emitter at liquid nitrogen temperatures on Silicon
2) Quantum Dot Inter-Subband Photodetector
3) Intermediate Band Solar Cells with 2-photon absorption upto 170 K.